Absolute and Relative Approximation with a Singularity

A. BACOPOULOS

Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec, Canada H3C 3J7; and Chair of Numerical Analysis, National Technical University. Athens 147, Greece

AND

O. Shisha

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881

Received February 2, 1979*

1. INTRODUCTION

Let f be a real function, continuous and $\neq 0$ on [-1, 1] and let N be an integer ≥ 0 . Consider the problem of relative approximation of f by real polynomials r(x) of degree $\leq N$, i.e., approximating 1 by r(x)/f(x), uniformly on [-1, 1]. This is the same as the problem of approximating f by r in the norm

$$\sup_{-1\leqslant x\leqslant 1} |1/f(x)| \cdot |f(x) - r(x)|,$$

a special case of the familiar problem of uniform approximation, with a (positive, continuous) weight function, of a continuous function, by polynomials of degree $\leq N$, namely, the case where the weight function is the reciprocal of the approximated function.

To get away from that familiar problem, we modify our assumptions by assuming that f(0) = 0, while $f(x) \neq 0$ throughout $[-1, 1] \sim \{0\}$. In fact, we shall assume that, for some natural number k, $x^k/f(x)$ is bounded in $[-1, 1] \sim \{0\}$. Given an integer $n \ge 0$, one may wish to approximate 1,

* Based on an earlier, unpublished work.

uniformly on $|-1, 1| \sim \{0\}$, by ratios $x^k p(x)/f(x)$, where p is a real polynomial of degree $\leq n$. This was studied in |1|. In the present article we undertake a more ambitious project, namely, for every $x \in [-1, 1] \sim \{0\}$, we consider $R_p(x)$, the largest of $|f(x) - x^k p(x)|$, $|1 - \{x^k p(x)/f(x)\}|$, and we study those p which minimize $||R_p|| = \sup_{x \in [-1, 1]} R_p(x)$. It is not difficult to see that $||R_p|| = \max_{x \in [-1, 1]} R_p(x)$, where $R_p(0) = \lim_{t \to 0} \sup_{x \in [-1, 1]} |1 - \{t^k p(t)/f(t)\}|$. We are concerned with questions of uniqueness and characterization of the minimizing p's. (That such a p exists is quite straightforward, by a standard compactness argument.)

2. Some Definitions

Let $k \ge 1$ and $n \ge 0$ be integers, Π_n the set of all real polynomials of degree $\le n$ (including the constant 0), f a real function, continuous in [-1, 1], f(0) = 0, $f(x) \ne 0$ throughout $[-1, 1] \sim \{0\}$, and $\sup_{x \in [-1, 1] \sim \{0\}} |x^k/f(x)| < \infty$.

We set

$$\mu = \lim_{x \to 0} \inf x^k / f(x), \qquad M = \lim_{x \to 0} \sup x^k / f(x).$$

Let $p \in \Pi_n$. We define

$$e_p(x) = f(x) - x^k p(x), \qquad -1 \le x \le 1;$$

$$E_p(x) = 1 - \frac{x^k p(x)}{f(x)}, \qquad 0 < |x| \le 1;$$

$$\|R_p\| = \sup_{1 \le x \le 1} R_p(x),$$

where, as above,

$$R_p(x) = \max\{|e_p(x)|, |E_p(x)|\} \quad \text{for} \quad 0 < |x| \le 1,$$
$$= \lim_{t \to 0} \sup|E_p(t)| \quad \text{for} \quad x = 0.$$

Observe that

$$R_{p}(0) = \max\{\lim_{t \to 0} \sup E_{p}(t), |\lim_{t \to 0} \inf E_{p}(t)|\}$$
$$= \max\{\lim_{t \to 0} \sup E_{p}(t), -\lim_{t \to 0} \inf E_{p}(t)\}$$

and so

$$- \|R_p\| \leqslant \lim_{t \to 0} \inf E_p(t) \leqslant \lim_{t \to 0} \sup E_p(t) \leqslant \|R_p\|.$$

$$\tag{1}$$

An $x \in [-1, 1]$ is called a *critical point* iff $R_p(x) = ||R_p||$. If $x \neq 0$ is a critical point, we set

$$s(x) = \operatorname{sgn}(x^k), \quad \sigma(x) = \operatorname{sgn} e_p(x), \quad S(x) = 1.$$

Let 0 be a critical point. We set

$$s(0) = (-1)^k, \qquad \sigma(0) = 1,$$

while S(0) will be defined below as a set consisting of one or two of -1, 0, 1.

Case I. $\mu M \neq 0$. If $\mu M < 0$, p(0) = 0, and $\lim_{t \to 0} \sup E_p(t) = ||R_p||$, set $S(0) = \{0\}$. Otherwise, S(0) is defined by Table I.

Case II. $\mu M = 0$.

If
$$\mu < 0 = M$$
, $p(0) < 0$, and
 $- \|R_p\| = \lim_{t \to 0} \inf E_p(t) \le \lim_{t \to 0} \sup E_p(t) < \|R_p\|$, then $S(0) = \{(-1)^k\}$.
If $\mu < 0 = M$, $p(0) > 0$, and $\lim_{t \to 0} \sup E_p(t) = \|R_p\|$, then $S(0) = \{(-1)^{k+1}\}$.
If $\mu = 0 < M$, $p(0) < 0$, and $\lim_{t \to 0} \sup E_p(t) = \|R_p\|$, then $S(0) = \{(-1)^k\}$.
If $\mu = 0 < M$, $p(0) > 0$, and $\lim_{t \to 0} \sup E_p(t) < \|R_p\|$, then $S(0) = \{(-1)^k\}$.
If $\mu = 0 < M$, $p(0) > 0$, and $-\|R_p\| = \lim_{t \to 0} \inf E_p(t) \le \lim_{t \to 0} \sup E_p(t) < \|R_p\|$, then $S(0) = \{(-1)^{k+1}\}$.

In all other instances in Case II, let $S(0) = \{0\}$.

Every critical point $\neq 0$ is called an *extremum*. Also, 0 is called an extremum iff it is a critical point, and S(0) is a singleton consisting of 1 or -1.

Finally, 0 is called a *determining point* iff it is a critical point, but not an extremum.

TABLE I

	$- \ R_p\ = \lim_{t \to 0} \inf E_p(t),$	$- \ R_{\rho}\ < \lim_{t \to 0} \inf E_{\rho}(t).$	$- \ R_{p+} = \lim_{t \to 0} \inf E_p(t).$	
	$\lim_{t\to 0}\sup E_p(t)< R_p $	$\lim_{t\to 0} \sup E_p(t) = [R_p]$	$\lim_{t\to 0}\sup E_p(t)=\ R_p\ $	
p(0) < 0	$S(0) = \{-\operatorname{sgn} Mf(-1) f(1) \}$	$S(0) = {sgn \mu f(-1) f(1) }$	$S(0) = \{- \operatorname{sgn} Mf(-1) f(1) , \operatorname{sgn} \mu f(-1) f(1) \}$	
$p(0) \ge 0$	S(0) = $\{- \operatorname{sgn} \mu f(-1) f(1) \}$	$S(0) = \{sgn[Mf(-1)f(1)]\}$	$S(0) = + sgn[\mu f(-1) f(1)], sgn[Mf(-1) f(1)]$	

3. UNIQUENESS AND CHARACTERIZATION OF BEST APPROXIMATIONS

We assume throughout this Section the hypotheses, definitions and notations of Section 2.

THEOREM 1. Suppose 0 is a determining point for some $p^* \in \Pi_n$. Then p^* minimizes $||R_n||$ among all $p \in \Pi_n$.

Proof. Suppose there is $q \in \Pi_n$ with $||R_q|| < ||R_{p'}||$. If $q(0) = p^*(0)$, then, since 0 is a critical point,

$$\|R_{q}\| \ge \max\{\lim_{t \to 0} \sup E_{q}(t), -\lim_{t \to 0} \inf E_{q}(t)\}\$$

= max { lim sup $E_{p}(t), -\lim_{t \to 0} \inf E_{p}(t)\}\$
= $\|R_{p}\|,$

a contradiction. Hence $\delta = q(0) - p^*(0) \neq 0$.

Case 1. $\mu M \neq 0$.

Subcase 1. $S(0) = \{0\}$. We have $\mu < 0 < M$, $p^*(0) = 0$, and $\lim_{t \to 0} \sup E_{p^*}(t) = ||R_{p^*}||$.

If $\delta > 0$, then

$$||R_q|| \ge \lim_{t \to 0} \sup E_q(t) = \lim_{t \to 0} \sup E_p(t) - \delta\mu > ||R_p||$$

If $\delta < 0$, then

$$||R_q|| \ge \lim_{t \to 0} \sup E_q(t) = \lim_{t \to 0} \sup E_p(t) - \delta M > ||R_p|;$$

in either case we reach a contradiction.

Subcase 2. $S(0) = \{-1, 1\}$. Then $\lim_{t\to 0} \inf E_{p^*}(t) = -\|R_{p^*}\|$, $\lim_{t\to 0} \sup E_{p^*}(t) = \|R_{p^*}\|$, $\operatorname{sgn} \mu = \operatorname{sgn} M$. Observe that the first equality implies that (a) $p^*(0) \neq 0$, (b) if $p^*(0) < 0$, then $\mu < 0$, and (c) if $p^*(0) > 0$, then M > 0.

Suppose $q(0) \ge 0$. Then (i) $\lim_{t\to 0} \inf E_q(t) = 1 - Mq(0) = 1 - Mp^*(0) - M\delta$, which equals $- \|R_{p^*}\| - M\delta$ if $p^*(0) > 0$, and $\|R_{p^*}\| - M\delta$ if $p^*(0) < 0$; (ii) $\lim_{t\to 0} \sup E_q(t) = 1 - \mu q(0) = 1 - \mu p^*(0) - \mu\delta$, which equals $\|R_{p^*}\| - \mu\delta$ if $p^*(0) > 0$, and $- \|R_{p^*}\| - \mu\delta$ if $p^*(0) < 0$. Hence, if $p^*(0) > 0$, and $M\delta > 0$, then $\lim_{t\to 0} \inf E_q(t) < - \|R_{p^*}\|$; if $p^*(0) > 0$, and $M\delta < 0$, then $\lim_{t\to 0} \sup E_q(t) > \|R_{p^*}\|$; if $p^*(0) < 0$, then $\delta > 0$, $\mu < 0$, $M\delta < 0$. and, therefore, $\lim_{t\to 0} \sup E_q(t) \ge \lim_{t\to 0} \inf E_q(t) \ge \|R_{p^*}\|$; if $E_q(t) > \|R_{p^*}\|$.

By (1), invariably, $||R_a|| > ||R_p||$, a contradiction.

A similar contradiction is obtained if q(0) < 0.

Case II. $\mu M = 0$. One proceeds analogously.

124

THEOREM 2. $p^* \in \Pi_n$ minimizes $||R_p||$ among all $p \in \Pi_n$ iff (A) or (B) holds.

(A) 0 is a determining point for p^* .

In this case, $||R_{p'}|| = 1$ if $\mu M \leq 0$, $||R_{p'}|| = |(M - \mu)/(M + \mu)|$ if $\mu M > 0$, and, in general, $||R_p||$ is minimized over Π_n by more than one polynomial.

(B) There are points $x_1, ..., x_{n+2}$ of [-1, 1], all extrema for p^* , such that $-1 \leq x_1 < x_2 < \cdots < x_{n+2} \leq 1$, and, for that p^* ,

$$s(x_{j+1}) \sigma(x_{j+1}) S(x_{j+1}) = -s(x_j) \sigma(x_j) S(x_j), \qquad j = 1, 2, \dots, n+1.$$
(2)

(Note that each $S(x_r)$ is a singleton, and we use this symbol to denote its unique element).

In this case, p^* is the unique polynomial minimizing $||R_p||$ over Π_p .

Proof. Suppose $p^* \in \Pi_n$ minimizes $||R_p||$ among all $p \in \Pi_n$, and 0 is not a determining point for p^* . We shall prove the first sentence of (B). Suppose it is false, and take the largest $N \ge 1$, call it *m*, for which there are, for that p^* , extrema $x_1, ..., x_N$ with $-1 \le x_1 < x_2 < \cdots < x_N \le 1$, and

$$s(x_{i+1}) \sigma(x_{i+1}) S(x_{i+1}) = -s(x_i) \sigma(x_i) S(x_i)$$

whenever $1 \le j < N$. Then $1 \le m < n + 2$. One can show that there are numbers $t_0, t_1, ..., t_m, -1 = t_0 \le x_1 < t_1 < x_2 < \cdots < t_{m-1} < x_m \le t_m = 1$, so that, if $0 \le j < m$, then there are no extrema ξ, η for p^* in $|t_j, t_{j+1}|$ with $s(\eta) \sigma(\eta) S(\eta) = -s(\xi) \sigma(\xi) S(\xi)$. Set

$$\Pi(x) \equiv \prod_{r=1}^{m-1} (x - t_r)$$

(meaning 1 if m = 1), and, for every real η ,

$$q_{\eta}(x) \equiv p^*(x) + \eta \Pi(x).$$

Our aim is a real η for which $||R_{q_n}|| < ||R_{p^*}||$, a contradiction.

Let ε' be one of 1, -1 so that $s(x_1) \sigma(x_1) S(x_1) = \operatorname{sgn}[\varepsilon' \Pi(x_1)]$. (Observe that each $\sigma(x_j) \neq 0$, for otherwise, $f(x) \equiv x^k p^*(x)$, and the first sentence of (B) trivially holds.) Clearly,

$$s(x_j) \sigma(x_j) S(x_j) = \text{sgn}[\varepsilon' \Pi(x_j)] \neq 0, \qquad j = 1, 2, ..., m.$$
 (3)

Case I. $\mu M > 0$.

(a) Suppose $1 \leq j \leq m, x_j \neq 0$. Then

$$\operatorname{sgn} e_{p^*}(x_j) = \operatorname{sgn} \left[x_j^k \varepsilon' \Pi(x_j) \right] \neq 0,$$

$$\operatorname{sgn} E_p(x_j) = \operatorname{sgn} [x_j^k \varepsilon' \Pi(x_j) / f(x_j)].$$

Hence, if $0 < \varepsilon < 2 |e_{p'}(x_j)| x_j^k \Pi(x_j)|^{-1}|$, then

$$\begin{aligned} |e_{q_{\epsilon\epsilon}}(x_j)| &= |e_p.(x_j) - x_j^k \varepsilon \varepsilon' \Pi(x_j)| \\ &= |e_p.(x_j)| \cdot \left| 1 - \frac{x_j^k \varepsilon \varepsilon' \Pi(x_j)}{e_p.(x_j)} \right| < |e_p.(x_j)|, \\ |E_{q_{\epsilon\epsilon}}(x_j)| &= \frac{|e_{q_{\epsilon\epsilon}}(x_j)|}{|f(x_j)|} < |E_p.(x_j)|; \end{aligned}$$

and, consequently,

$$R_{q_{ij}}(x_j) < \|R_p\|.$$

(b) Suppose 0 is one of $x_1, ..., x_m$. Then (see Table 1) the relations

$$- \|R_{p}\| \leqslant \lim_{t \to 0} \inf E_{p}(t), \qquad \lim_{t \to 0} \sup E_{p}(t) \leqslant \|R_{p}\|$$

$$\tag{4}$$

hold with exactly one equality, say equality holds in the first relation. It is easy to see from Table I that $s(0) S(0) = -\operatorname{sgn} \mu = -\operatorname{sgn} M$, and, hence, by (3), $\operatorname{sgn}[\varepsilon'\Pi(0)] = -\operatorname{sgn} \mu = -\operatorname{sgn} M$. Let

$$0 < \varepsilon < \frac{\|R_p \cdot\| - \lim_{t \to 0} \sup E_p \cdot (t)}{\|\Pi(0)\| \max(|\mu|, |M|)}.$$

Then

$$\lim_{t \to 0} \inf E_{q_{t,t}}(t) = \lim_{t \to 0} \inf \left[E_{p}(t) - \frac{\varepsilon \varepsilon' t^k \Pi(t)}{f(t)} \right]$$

$$\geqslant \lim_{t \to 0} \inf E_{p}(t) - \lim_{t \to 0} \sup \varepsilon \varepsilon' \Pi(t) \frac{t^k}{f(t)}$$

$$= \left\{ - \|R_{p}\| - \varepsilon \varepsilon' \Pi(0) M \text{ if } M < 0 \\ - \|R_{p}\| - \varepsilon \varepsilon' \Pi(0) \mu \text{ if } M > 0 \right\} > - \|R_{p}\|.$$

126

$$\begin{split} \lim_{t \to 0} \sup E_{q_{\epsilon\epsilon}}(t) &\leq \lim_{t \to 0} \sup E_{p}(t) - \lim_{t \to 0} \inf \varepsilon \varepsilon' \Pi(t) \frac{t^k}{f(t)} \\ &= \begin{cases} \limsup_{t \to 0} E_{p}(t) - \varepsilon \varepsilon' \Pi(0) \mu & \text{if } \mu < 0 \\ \limsup_{t \to 0} \sup E_{p}(t) - \varepsilon \varepsilon' \Pi(0) M & \text{if } \mu > 0 \end{cases} < \| R_{p} \|. \end{split}$$

Hence

 $R_{q_{\mu\nu}}(0) < ||R_{p^*}||.$

One proceeds similarly if equality holds in the second relation (4). Case II. $\mu M \leq 0$. We can, again, find a real η_1 with

 $R_{q_{n_1}}(x_j) \leq ||R_p||$ for j = 1, 2, ..., m.

Furthermore, by a straightforward, standard argument, we can always

μ, M	<i>p</i> (0)	$\lim_{t\to 0} \sup E_p(t) = \ R_p\ $	p(0)	$\lim_{t\to 0} \inf E_p(t) = -^{\parallel} R_p ^{\parallel}$
$0 < \mu \leqslant M$	any	Extremum	> 0	Extremum, $\Sigma = -1$
	sgn	$\varSigma=1$	$\leqslant 0$	Cannot occur
$\mu \leqslant M < 0$	any	Extremum	≥0	Cannot occur
	sgn	$\Sigma = -1$	< 0	Extremum, $\Sigma = 1$
$\mu < 0 < M$	>0	Extremum, $\Sigma = -1$	>0	Extremum, $\Sigma = -1$
	=0	Determining point	= 0	Cannot occur
	< 0	Extremum, $\Sigma = 1$	< 0	Extremum, $\Sigma = 1$
$\mu = 0 < M$	$\geqslant 0$	Determining point	> 0	Extremum iff $\lim_{t\to 0} \sup E_p(t) < \frac{11}{2}R_p$
	< 0	Extremum, $\Sigma = 1$	≤0	in which case $\Sigma = -1$ Cannot occur
$\mu < 0 = M$	>0	Extremum, $\Sigma = -1$	$\geqslant 0 < 0$	Cannot occur Extremum iff lim sup $E_p(t) < R_p $
	≼ 0	Determining point		in which case $\Sigma = 1$
$\mu = 0 = M$	any sgn	Determining point	any sgn	Cannot occur

TABLE II

(regardless of sgn(μM)) choose a real η such that $R_{q_{\eta}}(x) < ||R_{p}||$ throughout [-1, 1], a contradiction.

Conversely, if $p^* \in \Pi_n$ satisfies (A), then, by Theorem 1, p^* minimizes $||R_p||$ over Π_n . If $p^* \in \Pi_n$ satisfies (B), and if $||R_q|| < ||R_p||$ for some $q \in \Pi_n$, then examination of $e_{p'}(x) - e_q(x)$ and $E_{p'}(x) - E_q(x)$ shows that p^* and q coincide at n + 1 points, and, hence, everywhere, contradicting the last inequality.

We omit proof of the remaining statements of Theorem 2.

THEOREM 3. Let B(f) be the set of all p^* minimizing $||R_p||$ over Π_n . If $\mu M < 0$, then $B(f) = \{p \in \Pi_n : p(x) \equiv 0, \text{ or } \operatorname{sgn} p(x) = \operatorname{sgn}(x^k/f(x)) \text{ and } |p(x)| \leq |2f(x)/x^k| \text{ throughout } |-1, 1| \sim \{0\}\}, \text{ and } \min_{p \in \Pi_n} ||R_p|| = 1.$

If $\mu M > 0$, then $B(f) = \{ p \in \Pi_n : p(0) = 2/(M + \mu) \text{ and } 2\mu f(x) + x^{-k}(M + \mu)^{-1} \leq p(x) \leq 2Mf(x) x^{-k}(M + \mu)^{-1} \text{ throughout } [-1, 1] \sim \{0\}\},$ and $\min_{p \in \Pi_n} ||R_p|| = |(M - \mu)/(M + \mu)|.$

We omit proof.

We conclude with a table (Table II) classifying all possibilities for the point 0, assumed to be a critical point for some $p \in \Pi_n$ (so that $||R_p||$ is either $\lim_{t\to 0} \sup E_p(t)$ or $-\lim_{t\to 0} \inf E_p(t)$). In case 0 is an extremum, we give also the value of the product $s(0) \sigma(0) S(0)$ (see (2)) which we denote by Σ .

Reference

1. A. BACOPOULOS, O. SHISHA AND G. D. TAYLOR, Relative approximation, J. Approx imation Theory 15 (1975), 356-365.