Absolute and Relative Approximation with a Singularity

A. Bacopoulos

Department of Computer Science and Operations Research, U'nitersity of Montreal, Montreal. Quebec, Canada H3C 3J7; and Chair of Numerical Analysis, National Technical Universit!. Athens 147, Greece

AND
O. Shisha

Department of Mathematics, University of Rhode Island, Kingston. Rhode Island 02881

Received February 2, 1979*

1. Introduction

Let f be a real function, continuous and $\neq 0$ on $[-1,1]$ and let N be an integer $\geqslant 0$. Consider the problem of relative approximation of f by real polynomials $r(x)$ of degree $\leqslant N$, i.e., approximating 1 by $r(x) / f(x)$, uniformly on $|-1.1|$. This is the same as the problem of approximating f by r in the norm

$$
\sup _{-1 \leqslant x \leqslant 1}|1 / f(x)| \cdot|f(x)-r(x)| \text {, }
$$

a special case of the familiar problem of uniform approximation, with a (positive, continuous) weight function, of a continuous function, by polynomials of degree $\leqslant N$, namely, the case where the weight function is the reciprocal of the approximated function.

To get away from that familiar problem, we modify our assumptions by assuming that $f(0)=0$, while $f(x) \neq 0$ throughout $|-1,1| \sim\{0\}$. In fact, we shall assume that, for some natural number $k, x^{k} / f(x)$ is bounded in $|-1,1| \sim\{0\}$. Given an integer $n \geqslant 0$, one may wish to approximate 1 ,

[^0]uniformly on $|-1,1| \sim\{0\}$, by ratios $x^{k} p(x) / f(x)$, where p is a real polynomial of degree $\leqslant n$. This was studied in $|1|$. In the present article we undertake a more ambitious project, namely, for every $x \in|-1,1| \sim\{0\}$, we consider $R_{p}(x)$, the largest of $\left|f(x)-x^{k} p(x)\right|, \mid 1-\left\{x^{k} p(x) / f(x) \mid\right.$. and we study those p which minimize $\left\|R_{p}\right\|=\sup _{x \in 1} \quad$,.,|~01 $R_{p}(x)$. It is not difficult to see that $\left.\left\|R_{p}\right\|=\max _{x \in 1} \quad 1.1\right] \quad R_{p}(x)$, where $\quad R_{p}(0)=\lim _{t, 1)}$ sup $\mid 1-\left\{t^{k} p(t) / f(t)\right\}$. We are concerned with questions of uniqueness and characterization of the minimizing p s. (That such a p exists is quite straightforward, by a standard compactness argument.)

2. Some Definitions

Let $k(\geqslant 1)$ and $n(\geqslant 0)$ be integers, Π_{n} the set of all real polynomials of degree $\leqslant n$ (including the constant 0), f a real function, continuous in $|-1,1|, f(0)=0, f(x) \neq 0$ throughout $|-1,1| \sim\{0\}$, and $\sup _{x \in \mid} 1,1 \mid \sim\{1 \mid$ $\left|x^{k} / f(x)\right|<\infty$.

We set

$$
\mu=\lim _{x \rightarrow 0} \inf x^{k} / f(x), \quad M=\lim _{x \rightarrow 0} \sup x^{\kappa} / f(x) .
$$

Let $p \in \Pi_{n}$. We define

$$
\begin{array}{ll}
e_{p}(x)=f(x)-x^{k} p(x), & -1 \leqslant x \leqslant 1 \\
E_{p}(x)=1-\frac{x^{k} p(x)}{f(x)}, & 0<|x| \leqslant 1 \\
\left\|R_{p}\right\|=\sup _{1 \leqslant x \leqslant 1} R_{p}(x) &
\end{array}
$$

where, as above.

$$
\begin{array}{rlrl}
R_{p}(x) & =\max \left\{\left|e_{p}(x)\right|, \mid E_{p}(x)\right\} \\
& =\lim _{t \rightarrow 0} \sup \left|E_{p}(t)\right| & & \text { for } \quad 0<|x| \leqslant 1 .
\end{array}
$$

Observe that

$$
\begin{aligned}
R_{p}(0) & =\max \left\{\lim _{t \rightarrow 0} \sup E_{p}(t),\left|\lim _{t \rightarrow 0} \inf E_{p}(t)\right|\right\} \\
& =\max \left\{\lim _{t \rightarrow 0} \sup E_{p}(t),-\lim _{t \rightarrow 0} \inf E_{p}(t)\right\}
\end{aligned}
$$

and so

$$
\begin{equation*}
-\left\|R_{p}\right\| \leqslant \lim _{t \rightarrow 0} \inf E_{p}(t) \leqslant \lim _{t \rightarrow 0} \sup E_{p}(t) \leqslant\left\|R_{p}\right\| \tag{1}
\end{equation*}
$$

An $x \in|-1,1|$ is called a critical point iff $R_{p}(x)=\left\|R_{p}\right\|$. If $x \neq 0$ is a critical point, we set

$$
s(x)=\operatorname{sgn}\left(x^{k}\right), \quad \sigma(x)=\operatorname{sgn} e_{p}(x), \quad S(x)=1
$$

Let 0 be a critical point. We set

$$
s(0)=(-1)^{k}, \quad \sigma(0)=1
$$

while $S(0)$ will be defined below as a set consisting of one or two of $-1,0,1$.
Case I. $\mu M \neq 0$. If $\mu M<0, p(0)=0$, and $\lim _{t \rightarrow 0} \sup E_{p}(t)=\left\|R_{p}\right\|$, set $S(0)=\{0\}$. Otherwise, $S(0)$ is defined by Table I.

Case II. $\mu M=0$.
If $\mu<0=M, p(0)<0$, and
$\cdots\left\|R_{p}\right\|=\lim _{t+0} \inf E_{p}(t) \leqslant \lim _{t \rightarrow 0} \sup E_{p}(t)<\left\|R_{p}\right\|$, then $S(0)=\left\{(-1)^{k}\right\}$.
If $\mu<0=M, p(0)>0$, and $\quad \lim _{t \rightarrow 0} \sup E_{p}(t)=\left\|R_{p}\right\|$, then $S(0)=\left\{(-1)^{k+1}\right\}$.
If $\mu=0<M, p(0)<0$, and $\quad \lim _{t \rightarrow 0} \sup E_{p}(t)=\left\|R_{p}\right\|$, then $S(0)=\left\{(-1)^{k}\right\}$.
If $\mu=0<M, p(0)>0$, and
$-\left\|R_{p}\right\|=\lim _{t \rightarrow 1} \inf E_{p}(t) \leqslant \lim _{t \rightarrow 0} \sup E_{p}(t)<\left\|R_{p}\right\|$, then $S(0)=\left\{(-1)^{k+1}\right\}$.
In all other instances in Case II, let $S(0)=\{0\}$.
Every critical point $\neq 0$ is called an extremum. Also, 0 is called an extremum iff it is a critical point, and $S(0)$ is a singleton consisting of 1 or -1 .

Finally, 0 is called a determining point iff it is a critical point, but not an extremum.

TABLE 1

	$\begin{gathered} -\\| R_{p}= \\ \lim _{t+0} \inf E_{p}(t) \\ \lim _{t ; 0} \sup E_{p}(t)<R_{p} \end{gathered}$	$\begin{gathered} -\left\\|R_{\eta}\right\\|< \\ \lim _{t \rightarrow 1} \inf E_{p}(t) . \\ \lim _{t \rightarrow 1} \sup E_{p}(t)=\mid \cdot R_{p} \end{gathered}$	$\begin{gathered} -\\| R_{p i}= \\ \lim _{t \rightarrow 1} \inf E_{p}(t) \\ \lim _{t \rightarrow 4} \sup E_{p}(t)=\mid R_{p} \end{gathered}$
$p(0)<0$	$\begin{aligned} & S(0)= \\ & \{-\operatorname{sgn}\|M f(-1) f(1)\|\} \end{aligned}$	$\begin{aligned} & S(0)= \\ & \{\operatorname{sgn}\|\mu f(-1) f(1)\|\} \end{aligned}$	$\begin{aligned} & S(0)= \\ & \|-\operatorname{sgn}\| M f(-1) f(1) \mid . \\ & \quad \operatorname{sgn}\|\mu f(-1) f(1)\| \end{aligned}$
$p(0) \geqslant 0$	$\begin{aligned} & S(0)= \\ & 1-\operatorname{sgn}\|\mu f(-1) f(1)\|\} \end{aligned}$	$\begin{aligned} & S(0)= \\ & \{\operatorname{sgn}\|M f(-1) f(1)\|\} \end{aligned}$	$\begin{aligned} & S(0)= \\ & \{-\operatorname{sgn}\|\mu f(-1) f(1)\| \\ & \quad \operatorname{sgn}\|M f(-1) f(1)\| \end{aligned}$

3. Uniqueness and Characterization of Best Approximations

We assume throughout this Section the hypotheses, definitions and notations of Section 2.

Theorem 1. Suppose 0 is a determining point for some $p^{*} \in \Pi_{n}$. Then p^{*} minimizes $\left\|R_{p}\right\|$ among all $p \in \Pi_{n}$.

Proof. Suppose there is $q \in \Pi_{n}$ with $\left\|R_{q}\right\|<\left\|R_{p}.\right\|$. If $q(0)=p^{*}(0)$. then, since 0 is a critical point.

$$
\begin{aligned}
\left\|R_{q}\right\| & \geqslant \max \left\{\lim _{t \rightarrow 0} \sup E_{q}(t),-\lim _{t \rightarrow 0} \inf E_{q}(t)\right\} \\
& =\max \left\{\lim _{t \rightarrow+1} \sup E_{p} \cdot(t),-\lim _{t \rightarrow 0} \inf E_{p} \cdot(t)\right\} \\
& =\left\|R_{p} \cdot\right\|
\end{aligned}
$$

a contradiction. Hence $\delta=q(0)-p^{*}(0) \neq 0$.
Case I. $\mu M \neq 0$.
Subcase 1. $\quad S(0)=\{0\}$. We have $\mu<0<M . \quad p^{*}(0)=0$, and $\lim _{t \rightarrow 0} \sup E_{p} \cdot(t)=\left\|R_{p}.\right\|$.

If $\delta>0$, then

$$
\left\|R_{q}\right\| \geqslant \lim _{t \rightarrow 0} \sup E_{q}(t)=\lim _{t \rightarrow 0} \sup E_{p^{\prime}}(t)-\delta \mu>\left\|R_{p} .\right\| .
$$

If $\delta<0$, then

$$
\left\|R_{q}\right\| \geqslant \lim _{t \rightarrow 0} \sup E_{q}(t)=\lim _{t \rightarrow 0} \sup E_{p} \cdot(t)-\delta M>\left\|R_{p} \cdot\right\| ;
$$

in either case we reach a contradiction.
Subcase 2. $\quad S(0)=\{-1,1\}$. Then $\lim _{t \rightarrow 0}$ inf $E_{p^{*}}(t)=--\left\|R_{p^{*}}\right\|, \lim _{t \rightarrow 0}$ sup $E_{p^{*}}(t)=\left\|R_{p^{*}}\right\|, \operatorname{sgn} \mu=\operatorname{sgn} M$. Observe that the first equality implies that (a) $p^{*}(0) \neq 0$, (b) if $p^{*}(0)<0$, then $\mu<0$, and (c) if $p^{*}(0)>0$, then $M>0$.

Suppose $q(0) \geqslant 0$. Then (i) $\lim _{t+0} \inf E_{q}(t)=1-M q(0)=1-M p^{*}(0)-$ $M \delta$, which equals $-\left\|R_{p^{*}}\right\|-M \delta$ if $p^{*}(0)>0$, and $\left\|R_{p^{*}}\right\|-M \delta$ if $p^{*}(0)<0$; (ii) $\lim _{t .0} \sup E_{q}(t)=1-\mu q(0)=1-\mu p^{*}(0)-\mu \delta$, which equals $\mid R_{p} \cdot \|-\mu \delta$ if $p^{*}(0)>0$, and $-\left\|R_{p^{*}}\right\|-\mu \delta$ if $p^{*}(0)<0$. Hence, if $p^{*}(0)>0$, and $M \delta>0$, then $\lim _{t \rightarrow 0} \inf E_{q}(t)<-\left\|R_{p^{*}}\right\| ;$ if $p^{*}(0)>0$, and $M \delta<0$, then $\mu \delta<0$, and $\lim _{t+0} \sup E_{q}(t)>\left\|R_{p^{*}}\right\|$; if $p^{*}(0)<0$, then $\delta>0, \mu<0, M \delta<0$. and, therefore, $\lim _{t \rightarrow 0} \sup E_{q}(t) \geqslant \lim _{t \rightarrow 0} \inf E_{q}(t)>\left\|R_{p^{*}}\right\|$.

By (1), invariably, $\left\|R_{q}\right\|>\left\|R_{p} \cdot\right\|$, a contradiction.
A similar contradiction is obtained if $q(0)<0$.
Case II. $\quad \mu M=0$. One proceeds analogously.

Theorem 2. $p^{*} \in \Pi_{n}$ minimizes $\left\|R_{p}\right\|$ among all $p \in \Pi_{n}$ iff (A) or (B) holds.
(A) 0 is a determining point for p^{*}.

In this case, $\left\|R_{p}\right\|=1$ if $\mu M \leqslant 0,\left\|R_{p} \cdot\right\|=|(M-\mu) /(M+\mu)|$ if $\mu M>0$. and. in general. $\left\|R_{n}\right\|$ is minimized over Π_{n} by more than one polynomial.
(B) There are points x_{1}, \ldots, x_{n+2} of $|-1,1|$, all extrema for p^{*}, such that $-1 \leqslant x_{1}<x_{2}<\cdots<x_{n+2} \leqslant 1$, and, for that p^{*}.

$$
\begin{equation*}
s\left(x_{j, 1}\right) \sigma\left(x_{j+1}\right) S\left(x_{j, 1}\right)=-s\left(x_{j}\right) \sigma\left(x_{j}\right) S\left(x_{j}\right), \quad j=1,2 \ldots, n+1 \tag{2}
\end{equation*}
$$

(Note that each $S\left(x_{r}\right)$ is a singleton, and we use this symbol to denote its unique element).

In this case, p^{*} is the unique polynomial minimizing $\left\|R_{n}\right\|$ over Π_{n}.

Proof. Suppose $p^{*} \in \Pi_{n}$ minimizes $\left\|R_{p}\right\|$ among all $p \in \Pi_{n}$, and 0 is not a determining point for p^{*}. We shall prove the first sentence of (B). Suppose it is false, and take the largest $N \geqslant 1$, call it m, for which there are, for that p^{*}, extrema x_{1}, \ldots, x_{i} with $-1 \leqslant x_{1}<x_{2}<\cdots<x_{N} \leqslant 1$, and

$$
s\left(x_{j+1}\right) \sigma\left(x_{j+1}\right) S\left(x_{j+1}\right)=-s\left(x_{j}\right) \sigma\left(x_{j}\right) S\left(x_{j}\right)
$$

whenever $1 \leqslant j<N$. Then $1 \leqslant m<n+2$. One can show that there are numbers $t_{0}, t_{1}, \ldots, t_{m},-1=t_{0} \leqslant x_{1}<t_{1}<x_{2}<\cdots<t_{m-1}<x_{m} \leqslant t_{m}=1$, so that. if $0 \leqslant j<m$, then there are no extrema ξ, η for p^{*} in $\left|t_{j}, t_{j+1}\right|$ with $s(\eta) \sigma(\eta) S(\eta)=-s(\xi) \sigma(\xi) S(\xi)$. Set

$$
\left.\left.\Pi(x) \equiv\right|_{r} ^{m}\right|_{1} ^{1}\left(x-t_{r}\right)
$$

(meaning 1 if $m=1$), and, for every real η.

$$
q_{\eta}(x) \equiv p^{*}(x)+\eta \Pi(x) .
$$

Our aim is a real η for which $\left\|R_{q_{n}}\right\|<\left\|R_{p} \cdot\right\|$, a contradiction.
Let ε^{\prime} be one of $1,-1$ so that $s\left(x_{1}\right) \sigma\left(x_{1}\right) S\left(x_{1}\right)=\operatorname{sgn}\left|\varepsilon^{\prime} \Pi\left(x_{1}\right)\right|$. (Observe that each $\sigma\left(x_{j}\right) \neq 0$, for otherwise, $f(x) \equiv x^{k} p^{*}(x)$, and the first sentence of (B) trivially holds.) Clearly,

$$
\begin{equation*}
s\left(x_{j}\right) \sigma\left(x_{j}\right) S\left(x_{j}\right)=\operatorname{sgn}\left|\varepsilon^{\prime} \Pi\left(x_{j}\right)\right| \neq 0, \quad j=1,2, \ldots, m \tag{3}
\end{equation*}
$$

Case 1. $\quad \mu M>0$.
(a) Suppose $1 \leqslant j \leqslant m, x_{j} \neq 0$. Then

$$
\begin{aligned}
& \operatorname{sgn} e_{p^{\prime}}\left(x_{j}\right)=\operatorname{sgn}\left|x_{j}^{k} \varepsilon^{\prime} \Pi\left(x_{j}\right)\right| \neq 0, \\
& \operatorname{sgn} E_{p^{\prime}}\left(x_{j}\right)=\operatorname{sgn}\left|x_{j}^{k} \varepsilon^{\prime} \Pi\left(x_{j}\right) / f\left(x_{j}\right)\right| .
\end{aligned}
$$

Hence. if $0<\varepsilon<\left.2\left|e_{p^{\prime}}\left(x_{j}\right)\right| x_{j}^{k} \Pi\left(x_{j}\right)\right|^{1} \mid$, then

$$
\begin{aligned}
\left|e_{q_{t^{\prime}}}\left(x_{j}\right)\right| & =\left|e_{p^{\prime}}\left(x_{j}\right)-x_{j}^{k} \varepsilon \varepsilon^{\prime} \Pi \Pi\left(x_{j}\right)\right| \\
& =\left|e_{p^{\prime}}\left(x_{j}\right)\right| \cdot\left|1-\frac{x_{j}^{k} \varepsilon \varepsilon^{\prime} \Pi\left(x_{j}\right)}{e_{p^{\prime}}\left(x_{j}\right)}\right|<\left|e_{p^{\prime}}\left(x_{j}\right)\right|, \\
\left|E_{q_{t_{4}}}\left(x_{j}\right)\right| & =\frac{\left|e_{q_{t^{\prime}}}\left(x_{j}\right)\right|}{\left|f\left(x_{j}\right)\right|}<\left|E_{p^{*}}\left(x_{j}\right)\right|
\end{aligned}
$$

and, consequently,

$$
R_{q_{e c}}\left(x_{j}\right)<\left\|R_{p} \cdot\right\| .
$$

(b) Suppose 0 is one of x_{1}, \ldots, x_{m}. Then (see Table 1) the relations

$$
\begin{equation*}
-\left\|R_{p^{\prime}}\right\| \leqslant \lim _{t \cdot 0} \inf E_{p^{\prime}}(t) . \quad \lim _{t: 0} \sup E_{p^{\prime}}(t) \leqslant \| R_{p^{\prime}} \tag{4}
\end{equation*}
$$

hold with exactly one equality, say equality holds in the first relation. It is easy to see from Table I that $s(0) S(0)=-\operatorname{sgn} \mu=-\operatorname{sgn} M$, and, hence, by (3), $\operatorname{sgn}\left|\varepsilon^{\prime} \Pi(0)\right|=-\operatorname{sgn} \mu=-\operatorname{sgn} M$. Let

$$
0<\varepsilon<\frac{\mid R_{p} \cdot \|-\lim _{t .0} \sup E_{p} \cdot(t)}{|\Pi(0)| \max (|\mu|,|M|)} .
$$

Then

$$
\begin{aligned}
\lim _{t \rightarrow 0} \inf E_{q_{t^{\prime}}}(t) & =\lim _{t \cdot 0} \inf \left[E_{p^{\prime}}(t)-\frac{\varepsilon \varepsilon^{\prime} t^{k} \Pi(t)}{f(t)}\right] \\
& \geqslant \lim _{t \rightarrow 0} \inf E_{p^{\prime}}(t)-\lim _{t \rightarrow 0} \sup \varepsilon \varepsilon^{\prime} \Pi(t) \frac{t^{k}}{f(t)} \\
& =\left\{\begin{array}{l}
-\left\|R_{p^{*}}\right\|-\varepsilon \varepsilon^{\prime} \Pi(0) M \text { if } M<0 \\
-\left\|R_{p^{\prime}}\right\|-\varepsilon \varepsilon^{\prime} \Pi(0) \mu \\
\text { if } M>0
\end{array}\right\}>-\| R_{p^{\prime} \cdot \| \cdot} .
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{t \rightarrow 0} \sup E_{q_{\epsilon^{t}}}(t) & \leqslant \lim _{t \rightarrow 0} \sup E_{p^{*}}(t)-\lim _{t \rightarrow 0} \inf \varepsilon \varepsilon^{\prime} \Pi(t) \frac{t^{k}}{f(t)} \\
& =\left\{\begin{array}{l}
\lim _{t, 0} \sup E_{p^{*}}(t)-\varepsilon \varepsilon^{\prime} \Pi(0) \mu \text { if } \mu<0 \\
\lim _{t \rightarrow 0} \sup E_{p^{\cdot}}(t)-\varepsilon \varepsilon^{\prime} \Pi(0) M \text { if } \mu>0
\end{array}\right\}<\left\|R_{p^{\cdot}}\right\| .
\end{aligned}
$$

Hence

$$
R_{q_{t^{*}}}(0)<\left\|R_{p}\right\| .
$$

One proceeds similarly if equality holds in the second relation (4).
Case II. $\mu M \leqslant 0$. We can, again, find a real η_{1} with

$$
R_{q_{n_{1}}}\left(x_{j}\right) \leqslant\left\|R_{p} .\right\| \quad \text { for } \quad j=1,2, \ldots, m .
$$

Furthermore, by a straightforward, standard argument, we can always

TABLE II

μ, M	$p(0)$	$\lim _{t \rightarrow 0} \sup E_{p}(t)=!R_{p}$	$p(0)$	$\lim _{t \rightarrow 1} \inf E_{p}(t)=-4 R_{p}$	
$0<\mu \leqslant M$	any	Extremum	>0	Extremum, $\Sigma=-1$	
	sgn	$\Sigma=1$	$\leqslant 0$	Cannot occur	
$\mu \leqslant M<0$	any	Extremum	$\geqslant 0$	Cannot occur	
	sgn	$\Sigma=-1$	<0	Extremum, $\Sigma=1$	
$u<0<M$	>0	Extremum, $\Sigma=-1$	>0	Extremum, $\Sigma=-1$	
	$=0$	Determining point	$=0$	Cannot occur	
	<0	Extremum, $\Sigma=1$	<0	Extremum, $\Sigma=1$	
$\mu=0<M$			>0		
	$\geqslant 0$	Determining point		$\lim _{t \rightarrow p} \sup E_{p}(t)<!R_{r}$	
				in which case $\Sigma=1$	
	<0	Extremum, $\Sigma=1$	$\leqslant 0$	Cannot occur	
$\mu<0=M$	>0	Extremum, $\Sigma=-1$	$\geqslant 0$	Cannot occur	
			<0	Extremum iff	
				$\lim _{t \rightarrow 1} \sup E_{n}(t)<\\| R_{p}$	
	$\leqslant 0$	Determining point		in which case $5=-1$	
$u=0=M$	any		any		
	sgn	Determining point	sgn	Cannot occur	

(regardless of $\operatorname{sgn}(\mu M)$) choose a real η such that $R_{q_{n}}(x)<\left\|R_{p}\right\|$ throughout $|-1,1|$ a contradiction.

Conversely, if $p^{*} \in \Pi_{n}$ satisfies (A), then, by Theorem $1, p^{*}$ minimizes $\left\|R_{p}\right\|$ over Π_{n}. If $p^{*} \in \Pi_{n}$ satisfies (B), and if $\left\|R_{q}\right\|<\| R_{p}$. $\|$ for some $q \in \Pi_{n}$. then examination of $e_{p}(x)-e_{q}(x)$ and $E_{p} \cdot(x)-E_{q}(x)$ shows that p^{*} and q coincide at $n+1$ points, and, hence, everywhere, contradicting the last ine quality.

We omit proof of the remaining statements of Theorem 2.
Theorem 3. Let $B(f)$ be the set of all p^{*} minimizing $\left\|R_{p}\right\|$ over Π_{n}. If $\mu M<0$. then $B(f)=\left\{p \in \Pi_{n}: p(x) \equiv 0\right.$, or $\operatorname{sgn} p(x)=\operatorname{sgn}\left(x^{k} / f(x)\right)$ and $|p(x)| \leqslant\left|2 f(x) / x^{k}\right|$ throughout $\left.|-1,1| \sim\{0\}\right\}$, and $\min _{p \in H_{n}}\left\|R_{p}\right\|=1$.

If $\mu M>0$, then $B(f)=\left\{p \in \Pi_{n}: p(0)=2 /(M+\mu)\right.$ and $2 \mu f(x)$. $x^{\dot{k}}(M+\mu)^{\prime} \leqslant p(x) \leqslant 2 M f(x) x^{k^{k}}(M+\mu)^{\prime}$ throughout $|-1,1| \sim\{0\} \mid$. and $\min _{p \in H_{n}}\left\|R_{p}\right\|=|(M-\mu) /(M+\mu)|$.

We omit proof.
We conclude with a table (Table II) classifying all possibilities for the point 0 , assumed to be a critical point for some $p \in \Pi_{n}$ (so that $\left\|R_{p}\right\|$ is either $\lim _{t, 0} \sup E_{p}(t)$ or $\left.-\lim _{t, 0} \inf E_{p}(t)\right)$. In case 0 is an extremum. we give also the value of the product $s(0) \sigma(0) S(0)$ (see (2)) which we denote by Σ.

Reference

1. A. Bacopoulos. O. Shisha and G. D. Taybor, Relative approximation, J. Approx imation Theory 15 (1975). 356-365.

[^0]: * Based on an earlier, unpublished work.

