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I. INTRODUCTION

Let I be a real function, continuous and * 0 on [-I, I J and let N be an
integer ) O. Consider the problem of relative approximation of I by real
polynomials rex) of degree ~ N, i.e., approximating 1 by r(x)/I(x), uniformly
on I-I. II. This is the same as the problem of approximating I by r in the
norm

sup II/I(x)l· I/(x) - r(x)l,
-1<x<1

a special case of the familiar problem of uniform approximation, with a
(positive, continuous) weight function, of a continuous function, by
polynomials of degree ~ N, namely, the case where the weight function is the
reciprocal of the approximated function.

To get away from that familiar problem, we modify our assumptions by
assuming that/(O)=O, while/(x)*O throughout [-1, IJ~ jOf. In fact, we
shall assume that, for some natural number k, xk/I(x) is bounded in
[-I. II ~ 10 f. Given an integer n) 0, one may wish to approximate I,

* Based on an earlier, unpublished work.
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uniformly on I-I, 11 ~ ~Ol. by ratios xAp(x)/f(x), where p is a real
polynomial of degree ~ 11. This was studied in III. In the present article we
undertake a more ambitious project, namely, for every x E I-I, 11 ~ 10 l. we
consider R,,(x), the largest of If(x) -- xAp(x)l, II - ~xAp(x)/f(x)fi. and we
study those p which minimize IIR"II = SUPXE[ 1.11-101 R,,(x). It is not difficult
to see that IIR"li=max'E' l. ,j R,,(x), where R,,(0)=lim t4I sup
11 -- \lAp(1 )/f(l) fl. We are concerned with questions of uniqueness and
characterization of the minimizing p·s. (That such a p exists is quite
straightforward, by a standard compactness argument.)

2. SOME DEFINITIONS

Let k(?:- I) and 11(?:- 0) be integers. an the set of all real polynomials of
degree ~ 11 (including the constant 0), f a real function. continuous in
I-I, II, f(O)=O, f(x)icO throughout I-I, II~ lO}. and SUP'E[ l,1H1l1

IxA/f(x)1 < 00.

We set

.u = lim infxA/f(x),
X~O

Let p E an' We define

M = lim sup xA/f(x).
X.()

ep(x) = f(x) - xAp(x),

E ( ) = 1 _ x~(x)
I' X f(x) . °< Ixl ~ I;

sup Rp(x),
l<x.(1

where, as above,

Rp(x) = maxjlep(x)l, IE,,(x)1 f

= lim sup IEp(l)1
1--.0

Observe that

for O<lxl~L

for x = O.

RiO) = maxjlim sup Ep(l), Ilim inf Ep(t)l}
1--.0 (·.0

= max{lim sup Ep(t), -lim inf Ep(l)},
1--.0 1--.0

and so

(I)
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An x E [- I, I I is called a critical point iff Rp(x) = IIRpll. If x *0 is a
critical point. we set

s(x) = sgn(xk
),

Let 0 be a critical point. We set

a(x) = sgn ep(x), S(x) = 1.

s(O)=(-I)\ a(O) = I,

while S(O) will be defined below as a set consisting of one or two of --1,0, I.

Case I. JiM *O. If JiM < 0, p(O) = 0, and lim'4o sup Ep(t) = IIRpll, set
S(O) = ~Of. Otherwise, S(O) is defined by Table 1.

Case II. JiM = O.

Ifp < 0 = M, p(O) < 0, and
RpII = lim inf Ep(t) ( lim sup Ep(t) < II Rpll, then S(O) = I(~l)k f·

'>II (>I)

If J1 < 0 = M, p(O) > 0, and lim sup Ep(t) = II Rpll, then S(O) = (- I )k+ I f.
' ..0

If p = 0 < M, p(O) < 0, and lim sup Ep(t) = IIRpll, then S(O) = j(~l)kf.
'·.0

If p = 0 < M, p(O) > 0, and
-II RpII = lim inf Ep(t) ( lim sup Ep(t) < II Rpll, then S(O) = 1(- I)k' 1[.

1-..0 (--40

In all other instances in Case II, let S(O) = jO[.
Every critical point *0 is called an extremum. Also, 0 is called an

extremum iff it is a critical point, and S(O) is a singleton consisting of I
or -I.

Finally, 0 is called a determining point iff it is a critical point, but not an
extremum.

TABLE I

-IIR,,'I =

lim inf Ep(t).
I>{I

lim sup Ep(1) < I;R"i
I ..0

1'(0)<.0 5(0)=

1- sgnIMf(-1 If( I) II

fJ(O)~O 5(0)=
i sgn 1.4'(- I 1f( I ) II

-IIR"II <
lim mf E,,(t l.
[--->{I

lim sup E,,(t) =! R"
(---+0

5(0)=

jsgnLuf(-1 )f( I) Ii

5(0)=
jsgnIMf(-1 )f( I )11

- R" =
lim inf E,,(I).
1->(1

lim sup E,,(I) = I R,,I'
f ~)

5(Ol=
1- sgnIMf(-1 )f( 1ll.

sgnl,uf(-I If( I) j I

5(0)=

i- sgnl,uf(-I )fll) I.
sgnIMf(-1 )f(1 )11
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3. UNIQUENESS AND CHARACTERIZATION OF BEST ApPROXIMATIONS

We assume throughout this Section the hypotheses, definitions and
notations of Section 2.

THEOREM I. Suppose 0 is a determining point for some p* E !T". Then
p* minimizes II RI'll among all p E !Til'

Proof Suppose there is q E!T 1l with ilRql1 < IIRp.il. If q(O) = p*(O). then.
since 0 is a critical point.

= maxpim sup Ep.(t), -lim inf Ep.(t)i
1 ~I 1 ·0

a contradiction. Hence 6 = q(O) - p*(O) *- O.

Case 1. .uM *- O.

Subcase I. 5(0) = 10~. We have .u < 0 < M. p*(O) = O. and

liml.o sup Ep.(t) = IIRp.ll.
If 6 > 0, then

II Rqil .;, lim sup Eq(t) = lim sup Ep.(t) - 6.u > II Rp·li.
(.o 1->0

If 6 < 0, then

Ii R, II .;, lim sup Eq(t) = lim sup Ep.(t) - 6M > II Rp·li;
I I~O I~

in either case we reach a contradiction.

Subcase 2. 5(0) = 1-1,1}. Then liml .o inf Ep.(t) = -- Rp.ll, limt.o sup
Ep.(t) = IIRp.ll, sgn.u = sgn M. Observe that the first equality implies that (a)
p*(O) *- 0, (b) if p*(O) < 0, then.u < 0, and (c) if p*(O) > 0, then M> O.

Suppose q(O)';' O. Then (i) lim t .o inf Eq(t) = 1 - Mq(O) = I - Mp*(O) ­
Mt5, which equals -IIRp.li - Mt5 if p*(O) > 0, and IIRp.II-- Mt5 if p*(O) < 0;
(ii) lim/.o sup Eq(t) = 1 - M(O) = 1 - I1P*(O) - 1115, which equals liRp·II-- 11(j
if p*(O) > 0, and -IIRp.II-.ut5 if p*(O) < O. Hence, if p*(O) > 0, and
Mt5 > 0, then lim(o() inf Eit) < --II Rp·ll; if p*(O) > 0, and Mt5 < 0, then
1115 < 0, and lim/.o sup Eq(t) > II R1'.11; if p*(O) < 0, then 15 > 0,11 < 0, Mt5 < 0.
and, therefore, limt .o sup Eq(t).;, lim(o() inf Eq(t) > II Rp.ll·

By (1), invariably, IIRql1 > IIRp.ll, a contradiction.
A similar contradiction is obtained if q(O) < 0.

Case II. 11M = O. One proceeds analogously.
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THEOREM 2. p* E nil minimizes IIR"II among all p E nil iff (A) or (B)
holds.

(A) 0 is a determining point for pt.

/11 this case, liRp.ll= 1 ifIlM<'O, IIRp·II=I(M~Il)/(M+Il)1if pM > 0,
and. in general, II R fJ II is minimized over nil by more than one po(vnomial.

(B) There are points x I , ... , x" I 2 of 1-1, 11, all extrema for p*, such
that I ~ XI < X, < .,. < X" I' <. 1, and, for that pt.

s(X j • I) a(x j , I) S(xj . I) = ~s(Xj) a(xJ S(x j ), j = 1. 2,.... n + 1. (2)

(Note that each S(x r ) is a singleton. and we use this symbol to denote its
unique element).

/n this case, p* is the unique polynomial minimizing II R fJ over n".

Proof Suppose p* En" minimizes II Rp II among all pEn", and 0 is not
a determining point for p*. We shall prove the first sentence of (B). Suppose
it is false, and take the largest N> 1, call it m, for which there are, for that

p*, extrema XI ,... , x, with -1 <. XI < x 2 < '" < x,\ <. 1, and

whenever 1 ~ j < N. Then 1 ~ m < n + 2. One can show that there are
numbers to,tl, ... ,tm, -I=to<,xl<tl<x2< .. ·<tm l<xm<.tm=I, so
that. if 0 <. j < m, then there are no extrema ~,17 for p* in Itj , tit I I with
S(tl) a(t71 S(17) = -s(~) a(~) S(~). Set

m I

n(x)== I I (x-t r )

r I

(meaning I if m = 1). and, for every real tl.

ql1(X) == p*(x) + 17fl(X).

Our aim is a real tl for which IIRq,,11 < IIRfJ·lI, a contradiction.
Let t;' be one of 1, -1 so that s(X t )a(x l )S(x t ) = sgnlt;'n(xl)j· (Observe

that each a(xJ *' 0, for otherwise, f(x) == xkp* (x), and the first sentence of
(B) trivially holds.) Clearly,

s(xj ) a(xj ) S(xJ = sgn It;'fl(xJ] *' 0, j= 1, 2,...,m. (3 )
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Case 1. fJM > O.

(a) Suppose I ~ j ~ In, x j *' O. Then

sgn ep' (x;l = sgn Ix;c' Il(x j) I *' 0,

sgn Ep.(x;l = sgn [x;c' l1(x;)/f(x) I.

Hence, if 0 < c < 2Iep.(x;llx;ll(x;l1 II, then

1 eq,,(x)1 = I ep.(x;l- x;a' Il(xj )!

I

X;f;/:' Il(xj ) I
=lep.(xj)l· 1- () < lep.(xJ,

ep ' XI

iE )1_leq,,(xJ 'E ,'.
I q".(xj - 1f(·...) 1 < I p·(·\j)l·

and, consequently,

(b) Suppose 0 is one of x I , ... , x"'. Then (see Table I) the relations

·····IIRp.11 ~ lim inf E .(1),
, .() p

(4)

hold with exactly one equality. say equality holds in the first relation. It IS

easy to see from Table I that s(O) S(O) = - sgnfJ = - sgn M, and, hence, by
(3), sgnlc'I1(0)1 = -- sgnfJ = - sgn M. Let

O
. IIRjJ·II-lim,.().supEjJ.(l)

<. D < . .
11l(0)1 max(lfJ 1,1 MI)

Then

. . . . [, a'lJl(1) 1
lIm mfEq (1) = lim mf Ep.(t) - f()
t .() tf t -0 t

I
A

) lim inf Ep.(t) - lim sup ee'Il(I)--
,~() (..() f(1)

_ )-IIRp.II-f,C'Il(O)MifM<O( _I
- '> I R .

-IIRp.ll- f,C'Il(O)i1 if M >O' p
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and

rk
lim sup Eq(t):(; lim sup Ep,(t) - lim inf [;£'fl(t)j-()
( .() "(.() ( .() t

=ll}~(}SUPEp,(t)-[;[;'fl(O)f.1 iff.1<Ol II I·< Rpl·
lim sup Ep.(t) - [;[;' fl(O) M if f.1 > 0
(.()

Hence

One proceeds similarly if equality holds in the second relation (4).

Case II. f.1M:(; 0, We can, again, find a real 17, with

for j = 1,2,... , m.

Furthermore, by a straightforward, standard argument, we can always

TABLE II

p(O) lim sup E,,(I) = '! R"
r->o

p(O) IiminfEr(t)=- R1,!1
/->(1

in which case I: ,~

~ 0 Cannot occur

any
sgn Cannot occur

>0 Cannot occur
< 0 Extremum itT

lim sup Er(t) < IIRr
(---I()

Extremum itT

lim supE1,(t) < R"i
r---«i

Cannot occur
Extremum. E = I

in which case I: 00 I

Extremum, E =-1

Cannot occur

Extremum, E = --I
Cannot occur
Extremum, I: = 1

any Extremum >0
sgn 1-'=1 ~O

any Extremum >0
sgn E=-I <0

>0 Extremum. 1" = ~ I >0
=0 Determining point =0
<0 Extremum. E = 1 <0

>0

()<,u~M

,1l=0 <M >0 Determining point

<0 Extremum. E = 1

,II < 0 = ,\1 >0 Extremum, E = -I

~O Determining point

.lI=()=M any
sgn Determining point

('40',024
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(regardless of sgn(;iM)) choose a real tl such that Rq,,(x) < Rp·!1 throughout
[- I, I \. a contradiction.

Conversely. if p* E lln satisfies (A). then. by Theorem 1. p* minimizes
IIRpil over lln' If p* E lln satisfies (B). and ifllRql1 < liRp.!1 for some q Ell".
then examination of ep'(x)- eq(x) and Ep'(x) - Eq(x) shows that p* and q
coincide at n + I points. and, hence. everywhere, contradicting the last ine
quality.

We omit proof of the remaining statements of Theorem 2.

THEOREM 3. Let B(f) be the set o/all p* minimizing !iRp!1 Ol'er ll". {{
/1M<O. then B(f)=lpElln:p(x)=O. or sgnp(x)=sgn(xk/f(x)) and
Ip(x)1 (12f(x)/x k

l throughout [-I. I] ~ 10fl. and minpEIln IIRIJII = 1.
~f /1 M >O. then B(f)=lpEll,,:p(0)=2/(M+/1) and 2/1/(x),

x kiM +/1) I (p(x)( 2Mf(x)x k(M +/1) I throughout 1-1. II ~ 10ff,
and min pElIn !i R pi! = I(M - ,/1 )/(M + /1)1-

We omit proof.
We conclude with a table (Table II) classifying all possibilities for the

point 0. assumed to be a critical point for some p E ll" (so that IIRe!i is
either lim,.\) sup Ep(t) or lim,,\) inf Ep(t)). In case ° is an extremum. we
give also the value of the product s(O) a(O) 5(0) (see (2)) which we denote
by E.
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